
Call Graph Construction for Java Libraries

Michael Reif Michael Eichberg Ben Hermann Johannes Lerch Mira Mezini
Technische Universität Darmstadt

Darmstadt, Germany
{lastname}@cs.tu-darmstadt.de

ABSTRACT
Today, every application uses software libraries. Yet, while a
lot of research exists w.r.t. analyzing applications, research
that targets the analysis of libraries independent of any appli-
cation is scarce. This is unfortunate, because, for developers
of libraries, such as the Java Development Kit (JDK), it is
crucial to ensure that the library behaves as intended re-
gardless of how it is used. To fill this gap, we discuss the
construction of call graphs for libraries that abstract over all
potential library usages. Call graphs are particularly relevant
as they are a precursor of many advanced analyses, such as
inter-procedural data-flow analyses.

We show that the current practice of using call graph
algorithms designed for applications to analyze libraries leads
to call graphs that, at the same time, lack relevant call edges
and contain unnecessary edges. This motivates the need
for call graph construction algorithms dedicated to libraries.
Unlike algorithms for applications, call graph construction
algorithms for libraries must take into consideration the
goals of subsequent analyses. Specifically, we show that it is
essential to distinguish between the scenario of an analysis
for potential exploitable vulnerabilities from the scenario of
an analysis for general software quality attributes, e.g., dead
methods or unused fields. This distinction affects the decision
about what constitutes the library-private implementation,
which therefore, needs special treatment. Thus, building one
call graph that satisfies all needs is not sensical. Overall, we
observed that the proposed call graph algorithms reduce the
number of call edges up to 30% when compared to existing
approaches.

CCS Concepts
•Theory of computation → Program analysis;

Keywords
Call Graph Construction, Libraries, Java

1. INTRODUCTION
Call graphs are used as a major building block by more

advanced analyses. A frequent use of call graphs is, e.g., to
combine them with control flow graphs (CFG) to form an
interprocedural control flow graph (ICFG) [17, 18, 26]. These
in turn build the foundation for complex algorithms, such as
solvers for data flow problems (e.g., [20, 24]), flow-sensitive
points-to algorithms (e.g., [10]) or security-related analyses
(e.g., [4, 14]). Call graphs can also be used directly to identify
dead methods (i.e., methods that are never called). On the
other side, the use of libraries is ubiquitous in software devel-
opment. Yet, a systematic discussion of (a) the construction
of call graphs for libraries and (b) call graph algorithms
targeting specific needs of libraries is missing.

Currently, the gold standard for constructing call graphs
for libraries is to use a standard algorithm, such as Class Hi-
erarchy Analysis (CHA) [9], Rapid Type Analysis (RTA) [5],
or Variable-Type Analysis (VTA) [30] and to consider all
non-private methods as entry points. However, this ignores
two properties that distinguish libraries from stand-alone ap-
plications. First, libraries are not closed worlds — they can
be extended by their users via inheritance. Second, libraries
consist of classes and interfaces that define the public API
and those which belong to the library private implementa-
tion. As we discuss in this paper, ignoring the first property
leads to the construction of call graphs that miss important
edges, while ignoring the second property leads to call graphs
with many spurious edges. Consequently, we argue that call
graph construction algorithms for libraries must distinguish
between two usage scenarios of the library.

In the first scenario, the library is assumed to be open, i.e.,
all non-private classes, fields, and methods can be accessed;
non-final classes can be extended and non-final methods
can be overridden. In the following, we use the term open-
package assumption (OPA) to refer to this assumption. Call
graphs build based on OPA represent the unrestricted usage
scenarios of the library. In the second scenario, only the
code that belongs to a library’s public API is used or gets
extended by users of it. In Java, e.g., a library’s classes,
fields and methods with package visibility do not belong
to the public API. Additionally, all code that can only be
reached via code that does not belong to the public API is
also considered to belong to the library’s implementation;
irrespective of its visibility. We refer to this case as the
closed-package assumption (CPA). Under CPA, the public
API reflects the usage interface that library designers intend
to provide to users. CPA directly reflects a well established
best practice, Do not add code to the namespace of a 3rd

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2950312

Artifact evaluated by FSE✓

474

party library. This practice is already mandated by the first
versions of the Java Language Specification [12]1. Since then,
libraries are generally developed based on this assumption2,
which represents the intended usage scenarios of the library.

We argue that it is not possible to adequately address both
scenarios by using the same call-graph algorithm. If we did,
the algorithm would be either unsound or imprecise depend-
ing on the scenario in which it is used. As a result, we propose
and evaluate two call graph algorithms for libraries, one for
each of the usage scenarios described. Both algorithms: Lib-
CHAOPA and LibCHACPA, build upon the classical CHA
algorithm. The first algorithm (LibCHAOPA) is sound under
the open-package assumption. It makes very conservative
worst-case assumptions and can be used to identify security
issues such as those that have led to trusted method chain-
ing attacks [15]. However, the conservative algorithm may
produce many spurious call graph edges, under CPA. This
may lead to incorrect results — false positives and false neg-
atives — when used for analyzing a library’s implementation
w.r.t. general software quality attributes. In case of a dead
methods analysis, it in particular leads to false negatives.
For this kind of analysis, the library developer wants to treat
the library as closed. The second algorithm (LibCHACPA) is
sound for this purpose.

To summarize, we make the following contributions:

• A motivation for call graph construction algorithms dedi-
cated to libraries and a thorough discussion of the design
space for such algorithms (Section 2).

• Two concrete call graph algorithms for libraries based on
adaptations of the classical CHA algorithm (Section 3):
One that can be used to identify security issues (Lib-
CHAOPA) and one that targets general software quality
issues (LibCHACPA).

• A comprehensive empirical evaluation, which shows that
call graphs computed by the classical CHA algorithm and
those computed by LibCHAOPA and LibCHACPA are sig-
nificantly different. The evaluation supports our claims
that (a) classical call graph construction algorithms (specif-
ically CHA) do not serve the needs of either security or
general quality related analyses of libraries and (b) we
need two types of algorithms to address the respective
needs.

• A case study (Section 5) that shows that using LibCHACPA

as the foundation of a dead methods analysis enables us to
find ≈ 6 times more dead methods compared to a solution
based on the classical CHA algorithm.

We discuss related work in Section 6 and conclude the paper
in Section 7.

2. WHY LIBRARY CALL GRAPH ALGO-
RITHMS?

In this section, we motivate the algorithms presented in
this paper. We start by characterizing a library’s private

1The part describing packages in which a developer is
expected to put her code.

299 of the top 100 most popular Java libraries on Maven
central (http://mvnrepository.com/popular), as of Dec. 2015,
adhere to this best practice; i.e., no library contributes code
to other libraries and in the last case (Google Web Toolkit
(GWT)) it seems as if a 3rd-party library was copied over to
GWT and shipped as an integral part of it.

1 package l {
2 interface J { public void mj() }
3 public interface K { public void mk() }
4 class A { public void mk(){} /∗API∗/ }
5 class B extends A implements J,K {
6 public void mj(){} /∗Impl.∗/
7 }
8 class C {
9 public void mc(){} /∗API∗/

10 public void md(){} /∗Impl.∗/
11 }
12 public class D extends C {
13 public void md(){} /∗API∗/
14 }
15 class E implements K { public void mk() }
16 class F { public void mj() }
17 public class Factory {
18 public K createBK(){return new B();}
19 public Object create(){new E(); return new B();}
20 }
21 }

Listing 1: A Simple Library

implementation versus its public interface. Then, we mo-
tivate the need to consider all possible extensions of the
library by means of inheritance to construct a sound library
call graph3. Finally, we explain that different library usage
scenarios may require different kinds of analyses, which in
turn need different call graphs.

2.1 A Library’s Private Implementation
Conceptually, a library’s private implementation consists

of all code that a library user cannot directly use. Under
the open-package assumption (OPA), a library’s private im-
plementation consists of all methods and fields with private
visibility. Under the closed-package assumption (CPA), the
library’s private implementation additionally includes (a)
every code element (class, method or field) that has at most
package visibility and (b) all protected and public fields-
/methods of a package visible class, unless they are indirectly
exposed to the library’s user. The latter happens, e.g., if
the package visible class inherits from a public class or inter-
face and overrides or implements a method declared by the
super-type, or it has a subclass that is public (or implements
a public interface), which inherits the respective method.
In other words, a field/method of a package visible class
does not belong to the private implementation, if a user can
potentially directly access the field/method.

To illustrate CPA, consider the code in Listing 1. The
types A, B, C, and J belong to the library-private implemen-
tation. The class B implements the public interface K, which
defines the public method mk (Line 3). Hence, a method
with declared return type K could actually return an object
of type B (Line 18), enabling the user to call the method
mk defined by A (Line 4). Therefore, <A>.mk belongs to the
public API. In case of the public methods defined by C only
the method mc (Line 9) belongs to the public API. This
method is inherited by D and is not overridden. Hence, a
user who calls mc on an instance of D actually invokes <C>.mc.
The method <C>.md (Line 10) is overridden by D (Line 12)
and therefore belongs to the private implementation.

475

http://mvnrepository.com/popular

Our approach is conservative in classifying elements as
part of the library implementation in the sense that it may
classify code as belonging to the public API, although a
user of the library cannot actually use it. For example, the
method <E>.mk (Line 15) would be identified as belonging to
the library’s public interface, because the class implements
the public interface K. Even if E is never returned to a user:
E does not escape the scope of the library. Hence, a user
will never be able to invoke <E>.mk. However, by being
conservative we ensure that we will not miss a call edge.

2.2 Covering Possible Library Extensions
Established algorithms ignore OPA usage scenarios, which

is understandable given that extension code does not need to
be considered, when analyzing stand-alone applications. Yet,
extension code can lead to direct call dependencies between
library methods that are not apparent from the class hierarchy.
For illustration, consider a library that defines two types both
providing a method m: An interface I and a class C, whereby
C is not a subtype of I. Using a standard call graph algorithm
such as CHA, RTA, CFA, etc. a call <I>.m would not be
resolved against <C>.m as C is not a subtype of I. Yet, a
user of the library may later on create a subclass of C, say
SubCandI, that also implements I, but does not override m.
Hence, to produce a sound call graph for the library the call
<I>.m also must be resolved against <C>.m.

Hence, when constructing a library call graph to reason
about OPA usage scenarios, we have to do call-by-signature
resolution for all interface-based calls. The need to do so is
exemplified by a real world security bug (CVE- 2010-0840)
found in the JDK. To facilitate comprehension of the bug,
we will first introduce the basics of the Java Security Model
before we will discuss the attack in detail.

The Java Security Model allows to execute untrusted code
safely, i.e., even malicious code cannot do any harm to the
executing environment. This is required whenever a user
may not trust the provided application. The Security Model
is a stack-based access control mechanism that guards all
sensitive actions by permission checks which verify that all
the code on the current call stack is granted access to that
sensitive action.

Often attacks exploit forgotten permission checks, but
there have also been attacks, in which trusted code is used
to call sensitive actions on behalf of the attacker. The trick
to make this work is to make sure that the attacker’s code is
not on the call stack, when permissions are checked. This is
possible, if library code accepts a callback that is provided by
an attacker. But, the callback cannot be implemented by the
attacker, because the implementation would be unprivileged
and present on the call stack. Instead, the attacker must find
a suitable callback implementation that can be configured
to fit his needs.

One such vulnerability is documented in CVE-2010-0840:
Attackers exploited that checks consider the permissions
associated with the declaring class of the method on the
call stack but not its runtime receiver type. Hence, the
runtime receiver type may belong to untrusted code. For
illustration, consider Figure 1. Both the interface Entry

and the class Expression, belonging to the library, declare
the method getValue(). Expression neither implements
Entry nor is otherwise semantically related to it. Expression

3Unless reflection or native methods are used.

/*other methods*/
attacker.Link

Object getValue()
java.beans.Expression

Object getValue()
/* other methods */

«interface»
java.util.Map.Entry

getValue() is
not implemented
by attacker.Link

Library Code
Attacker Code

Figure 1: Trusted Method Chaining Attack

encapsulates a reflective call, whose receiver, method, and
arguments are specified by arguments to its constructor. The
reflective call is performed in Expression.invoke(), which
is called from within getValue().

Now, consider the following trusted method chaining at-
tack which bypasses the Java Security Model. The at-
tacker must create an Expression instance that encapsulates
a System.setSecurityManager(null) invocation. Yet, he
cannot call invoke on the Expression object himself. In-
stead, he defines a class attacker.Link that extends java.-

beans.Expression and implements java.util.Map.Entry,
thus linking Expression and Entry: As a result, Expres-

sion.getValue() is now an implementation of Entry.get-

Value(). The last step is to find a library method that
accepts an Entry object and calls getValue() on it, such
that when this happens the attacker is not on the call stack.

1 HashSet<Map.Entry<Object,Object>> set =
2 new HashSet<>();
3 set.add(
4 new Link(System.class,”setSecurityManager”,null));
5 JList list = new JList(new Object[] {
6 new HashMap<Object, Object>() {
7 public Set<Map.Entry<Object, Object>> entrySet(){
8 return set;
9 }}});

10 JFrame frame = new JFrame();
11 frame.getContentPane().add(list);
12 frame.setSize(50, 50);
13 frame.setVisible(true);

Listing 2: Set Up for the Attack

This behavior is provided by the user interface thread of
AWT/Swing. This thread dispatches events, as illustrated
in Listing 2. In Line 5, a JList object is created. A JList

usually uses a ListModel to control its contents and represen-
tation. As an alternative, an arbitrary array can be used. The
content representation is then based on each array element’s
String representation as returned by toString(). We add
a custom HashMap implementation to JList (Line 6), which
in its default implementation of toString() calls getKey()

and getValue() on its entries accessed by entrySet(). The
entrySet method (Line 7) of the custom HashMap returns
a set containing the pre-configured Link instance (Line 4).
Finally, the JList is added to a JFrame (Line 11) and the
latter is made visible. This triggers a paint event which is
processed by the user interface thread.

The shortened call stack of that processing is shown in Fig-
ure 2. The user interface thread transitively calls toString()
on all its contents, when it paints JList. We provided

476

java.lang.SecurityManager.checkPermission(RuntimeP...)
java.lang.System.setSecurityManager(SecurityManager)
java.beans.Expression.invoke()
java.beans.Expression.getValue(Object)
java.util.AbstractMap.toString()
...
javax.swing.JList.paint(Graphics)
...
java.awt.EventDispatchThread.run()

Figure 2: Call Stack at the Permission Check

the custom HashMap implementation as content, which does
not override toString(), thus AbstractMap.toString() is
called. AbstractMap.toString() iterates over the entry set
and calls getValue() on each entry. The only element of the
entry set is the attacker’s Link instance. Therefore, it effec-
tively calls Expression.getValue(), which, in turn, reflec-
tively invokes System.setSecurityManager(null). Setting
a new security manager is dangerous and therefore guarded
by a permission check, but — as illustrated in Figure 2 — no
method defined by the attacker is on the call stack, therefore
access is granted.

To systematically find exploitable callback implementa-
tions, a static analysis must check that there exists no at-
tacker callable method that transitively calls sensitive actions
without proper sanitization or permission checks. Such static
analyses have already been proposed [6, 7, 8, 16, 19]. How-
ever, the static analysis has to furthermore consider that
calls to callbacks are resolved to all possible trusted imple-
mentations. State-of-the-art call-graph algorithms will not
include a call edge from call sites of Entry.getValue() to
the method Expression.getValue(); though this edge is re-
quired to find the attack that we presented here. If this edge
is included, data flow analyses looking for unguarded paths
to sensitive actions are enabled to identify the vulnerability.

2.3 Closed-Package Usage Scenarios
A call graph algorithm that considers all possible extension

scenarios of the library, while being sound for analyses under
OPA, is not appropriate for analyzing libraries under CPA.
For illustration, consider the JRE 7’s class java.awt.data-

transfer.MimeType, which is package visible. This class
belongs to JRE’s private implementation, which is clearly
suggested by the comment directly above the class:

THIS IS *NOT* - REPEAT *NOT* - A PUBLIC
CLASS! DataFlavor IS THE PUBLIC INTERFACE,
AND THIS IS PROVIDED AS A ***PRIVATE***
(THAT IS AS IN *NOT* PUBLIC) HELPER CLASS!

This class defines the public method match(String), which
is not (no longer) used by code within the JDK and the class
is also not exposed to the client by any means. Hence, this
method belongs to the JRE’s private implementation and
does not have any intended users anymore; i.e., it is a dead
method. JDK developers would certainly want to detect and
remove such methods from the library, e.g., to improve code
comprehension, to avoid useless maintenance, or to shrink
the overall size of the library code. Yet, in a call graph that
is constructed to cover all extension scenarios — as described
in the previous subsection — the method would be treated
as an entry point. Hence, an analysis searching for dead
methods on top of such a call graph would not report it.

When a developer analyzes a library w.r.t. general software
quality attributes, such as the presence of dead methods or
dead code, he wants to treat the library as closed, i.e., he
deliberately does not want to consider code that (eventually)
extends, accesses or calls library-private code, which makes
it possible to construct a more precise call graph w.r.t. the
intended usage of the library. For example, a developer of
a library that uses the namespace prefix x.y.z to analyze
the implementation of the library itself will not take into
consideration what may happen if a user of the library puts
code in the package x.y.z.

Private code is pervasive in many Java libraries. For ex-
ample, the Oracle JDK 84 defines 8,330 (≈ 40%) package
visible classes. Additionally the public classes contain further
11,786 (≈ 9%) package visible methods and 6,668 (≈ 20%)
package visible fields.

3. THE CALL-GRAPH ALGORITHMS
The proposed call graph algorithms for libraries are build

on top of the Java bytecode framework OPAL5 and are
defined w.r.t. the JVM’s semantics. Implementing them as
bytecode analyses has two advantages. First, it makes them
useable for security related analyses, because attackers can
always directly craft bytecode. Second, we can also analyze
libraries written in other languages such as Scala or Groovy.
Both algorithms require that the bytecode of the library L,
for which we want to construct the call graph, and that of
any library LDep used by L are available and can be analyzed;
this includes in particular the JDK.

Both algorithms share the following main steps. First,
they determine the set of entry points under their respective
assumption (OPA or CPA). Second, they set each entry point
method to be reachable. Third, a fixpoint computation is
performed that computes the call graph. The fixpoint is
computed when all methods that are marked as reachable
are analyzed, which is an iterative process. For each method
call found in a reachable method, both algorithms determine
the set of potential call targets based on the class hierarchy;
i.e., calls to methods may resolve to any subtype of the
receivers static type. This resolution of call targets is the
same as done by class hierarchy analysis (CHA) [9].

If the receiver type is an interface, both algorithms addi-
tionally perform call-by-signature resolution to identify those
methods defined by classes that have a matching signature
(name, parameter types and return type), but where the class
does not inherit from the interface type. In case of OPA,
all these methods defined by non-final classes are potential
targets. In case of CPA, the interface and also the declaring
class visibilities are further evaluated to determine if the
target method is a potential target. Each method that is a
potential call target is then marked as reachable.

In the following, we elaborate on the two steps of the call
graph algorithms that lead to the different call graphs: (1)
the computation of entry points and (2) the computation of
the call targets in case of call-by-signature resolution.

4The classes found in the rt.jar of the Mac Version of
Oracle JDK 8 updated 66

5http://opal-project.de

477

http://opal-project.de

1 def isEntryPoint(declType, method):Boolean =
2 maybeCalledByTheJVM(method) ||
3 method.isStaticInitializer ||
4 (!method.isPrivate &&
5 (method.isStatic || declType.isInstantiable))

Listing 3: Entry Point Predicate in case of OPA

3.1 Entry Point Computation
Roughly speaking, a method is an entry point if it can

be called (a) by the JVM (e.g., finalize) or (b) directly
by a user of the library. The differences between the two
algorithms are described next. LibCHAOPA determines if a
method is an entry point by the predicate shown in Listing 3.

The first test (Line 2) identifies those methods that may
be called directly by the JVM. For example, the finalize

method is called by the JVM. Another example are serial-
ization related methods, e.g., readObject, in Serializable

classes. These methods are implicitly called by the JVM dur-
ing the (de-)serialization process. These methods are often
private and would not be considered as entry points other-
wise. The second test (Line 3) checks whether the method is
a static initializer. The last test (Line 4) is true if a method is
non-private and static or if the non-private instance method’s
decaring class is instantiable. In this scenario, a class is in-
stantiable if the class has a non-private constructor or has a
factory method that potentially creates and returns instances
of the class. A factory method is every static method with a
return type that is a supertype (reflexive) of the class type
and which calls a private constructor.

LibCHACPA determines whether a method is an entry
point by the logic depicted in Listing 4.

1 def isEntryPoint(declType,method):Boolean =
2 maybeCalledByTheJVM(method) ||
3 (method.isSaticInitializer && declType.isAccessible) ||
4 (method.isClientCallable &&
5 (method.isStatic || declType.isInstantiable))
6

7 def isClientCallable(declType,method):Boolean =
8 (method.isPublic || method.isProtected) &&
9 (declType.isPublic ||

10 declType.subclasses.exists{ subC =>
11 subC.isPublic && subC.inherits(m)})

Listing 4: Entry Point Predicate in case of CPA

The first test mayBeCalledByTheJVM (Line 2) is the same as
in case of LibCHAOPA. The second test (Line 3) is extended
and now also tests if the static initializer’s declaring class
(declType) is accessible. The latter is the case if the class
or a subclass of it can be referenced from client code. In
general, a class is referenced whenever the name of the class
can appear in the code without violating visibility constraints.
Hence, all public classes and also all package private classes
that have a public subclass are immediately accessible.

Each method that does not satisfy one of the first two tests
needs to be callable by a library’s user (Line 4) and either
must be static or be defined by a type that is instantiable.
A method is callable (Line 7) if the given method has public
or protected visibility (Line 8) and the declaring class of the

method is either public (Line 9) or has a public subclass
(Line 10), which does inherit the method, i.e., the method
is not overridden on the path from the declaring class to
the public subclass. In this case, a class is instantiable if
and only if it is instantiable as in case of LibCHAOPA and is
accessible as dicussed in the previous paragraph.

3.2 Call-By-Signature for Libraries
The algorithm to compute the edges that must be added

to the call graph due to call-by-signature resolution (CBS
resolution) in case of interface-based calls is depicted in
Listing 5.

1 def cbsTargets(declIntf, mSig):Set[Method]=
2 project.findConcreteMethods(mSig).filter{m =>
3 m.isPublic &&
4 !m.definingClass.isEffectivelyFinal &&
5 !(m.definingClass <: declIntf)
6 /∗in case of CPA:∗/
7 &&
8 (m.definingClass.isPublic ||
9 m.definingClass.subclasses.exists{subC =>

10 subc.isPublic &&
11 !(subC <: declIntf) && subC.inherits(m)})
12 }

Listing 5: Computing the CBS Targets

Given an interface as well as the signature of a method msig

defined by the respective interface, the algorithm returns a
set of all methods that are only resolved by signature, i.e.,
a method with the given signature that is defined in a class
that implements the interface will not be returned.

The first step, which is shared by LibCHAOPA and Lib-
CHACPA, is to identify all call targets by finding all non-
abstract, public instance methods that have the same method
signature as msig (Lines 2–13). For each such method – in
the following referred to as m – we then check whether m’s
defining class C is effectively final, i.e., whether C is declared
final or if C only defines private constructors which makes
it impossible to inherit from it. In both cases, C cannot be
subclassed and hence, m cannot become a call-by-signature
call target.

In case of LibCHACPA, we additionally check (Lines 7–12)
if either m’s defining class ist public or if C has a public sub-
class (Line 10) which does not implement the given interface
I and which does not override m (Line 11).

3.3 Summary
As argued in Section 2, depending on the goal of the

analysis, we must choose the respective call graph algorithm.
The two different algorithms that we presented in this section,
LibCHAOPA and LibCHACPA, serve this need.

As shown in Table 1, when we want to analyze a library
(be it our own or a 3rd party library) w.r.t. security issues
then we must make the most conservative assumptions and
this requires that we analyze the library using the open-
package assumption (OPA). Additionally, we must use call-
by-signature resolution related to all interface method calls
to ensure that the call graph is sound. We must make these
conservative assumptions when we analyze a third party
library, e.g., the JRE, because it is conceivable that another
library A that we also want to use tries to attack JRE. To
handle these cases we use LibCHAOPA.

478

Table 1: The Design Space for Library Call Graph Algorithms

Analysis Context Closed Library Assumption CBS

Library Security Issues (LibCHAOPA) in our library no (Someone will try to break our library.) yes
in 3rd party libraries no (Other libraries may trie to break it.) yes

Software Quality (LibCHACPA) in our library yes (We don’t care about misuses of our library.) yes
in 3rd party libraries yes (We are using the 3rd party library as intended.) yes

Application both security and general issues (implicitly) no

When we want to analyze a library (be it our own or a 3rd
party library) w.r.t. general software quality issues then we
shall create the call graph based on the assumption that the
library is used as intended by its developers. Hence, we can
treat the library as closed and analyze it under the closed-
package assumption (CPA) and use LibCHACPA. As with
LibCHAOPA, we must consider call-by-signature calls but now
only those that have a relation to the public API. For example,
the package visible class F in Listing 1 defines a method mj

(Line 16) that is also defined by the interface J. Under OPA
every call to <J>.mj must be resolved against <F>.mj. Under
CPA, F belongs to the library private implementation, hence,
the user cannot create a subclass of F that also implements
the interface J and therefore a (library internal) call to <J>.mj

is not resolved against <F>.mj.

G⊥

GCall by Sig

GLibCHAOPA

GLibRTAOPA

Sound if the library
is used as intended

Sound
GLibRTACPA

Pr
ec

isi
on

GLibCHACPA

≡

Figure 3: Precision of Call Graph Algorithms

The relation between the proposed/discussed call graph
algorithms is depicted in Figure 3 and is inspired by the
representation used in previous work [13]. It represents the
relative precision of the algorithms compared to each other.
As indicated in the figure, a call graph that is constructed
using call-by-signature resolution for all types of methods
calls would also be sound for libraries. As in case of appli-
cations, these call graphs are so huge that they are hardly
useable [13].

The first meaningful call graph algorithm is LibCHAOPA

which is sound but rather imprecise because the identification
of the library’s private implementation is most conservative.
Only code that is technically not usable by any client, be-
cause it is private, is considered as belonging to the private
implementation. This property makes the respective call
graphs suited for security focused analyses. LibCHACPA, on
the other hand identifies a library’s private implementation

based on generally agreed best practices and a thorough
analysis of the visibility of the library’s classes and methods.
Hence, the resulting graphs are unsound if the library is not
used as intended, but they much better approximate (and in
non-security related cases still over approximate) all poten-
tial real runtime call graphs. Therefore these call graphs are
better suited for general software quality analyses.

Theses ideas generalize to other call graph algorithms,
i.e., it is conceivable to adapt other established call graph
algorithms such that they can be used to analyze libraries.
For RTA, e.g., we would also consider calls based on their
signatures. Additionally, it is necessary to treat all classes
that could be instantiated as instantiable. In case of OPA,
it would result in a call graph that is identical to the one
created by LibCHAOPA. In case of CPA, it would be possible
to define one scope per package and to associate all package
private classes that are confined to their package with their
respective scope. This could lead to a reduction in the
number of call edges when compared to LibCHACPA.

4. EMPIRICAL STUDY

4.1 Setup
The empirical study is designed to help answer the follow-

ing questions:

RQ1 Do we need call graph algorithms specialized for li-
braries?

RQ2 Is it necessary to distinguish between the open- and
closed-package assumptions?

RQ3 Does a precise computation of the entry point set lead
to a more precise call graph?

RQ4 What are the performance characteristics of the pro-
posed algorithms?

We used the three algorithms to construct respective call
graphs for a large set of libraries6: the 100 most used distinct7

Java related libraries from Maven Central Repository 8. The
set is representative for a wide range of libraries. It contains
very small (e.g., JUnit) to very large (e.g., Scala Library)
libraries; libraries developed primarily in an industrial con-
text (e.g., Guava) or in an open-source setting (e.g., Apache
Commons); libraries from very different domains: testing
(e.g., Hamcrest, Mockito), databases (e.g., HSQLDB), byte-
code engineering (e.g., cglib), runtime environments (e.g.,

6The script to run the experiments can be downloaded
from: http://www.st.informatik.tu-darmstadt.de/artifacts/
DLC/

7In case of libraries that appeared multiple times in the
list, we just downloaded the most current version.

8http://mvnrepository.com/popular (as of Dec. 2015)

479

http://www.st.informatik.tu-darmstadt.de/artifacts/DLC/
http://www.st.informatik.tu-darmstadt.de/artifacts/DLC/
http://mvnrepository.com/popular

Scala Runtime), containers (e.g., Netty), and also general
utility libraries (e.g., osgi.core). Additionally, it contains two
libraries that have unusual properties: jsr305 and easymock-
classextesion both do not contain a single instance method
call. The jsr305 project is just a collection of annotations
and easymockclassextesion only contains interface definitions
and a few classes with static methods. Lastly, the set also
contains libraries that are written in other languages, such
as Scala (e.g., ScalaTest), whose compilers only use a subset
of the JVM’s concepts. The Scala compiler, e.g., does not
use package and protected visibility. This significantly limits
our possibilities to identify the library-private implementa-
tion (recall that LibCHACPA identifies a library’s private
implementation based on the evaluation of the code elements’
visibilities). For each library, we also downloaded all of its
dependencies to build complete class hierarchies for them.

4.2 Discussion
The results of the empirical study are shown in Tables 2-5.

They list only the top 5 and the bottom 5 libraries with
respect to the measured effect. Furthermore, each table
contains the mean as well as the standard deviation over all
100 libraries. Next, we will use this information to answer
the research questions.

RQ1. To answer the first question, we compare the num-
ber of edges in call graphs computed by LibCHAOPA and
the näıve approach. The results are shown in Table 2.

In 98 of the 100 libraries, CBS resolution introduces ad-
ditional edges. These edges are missing in the graphs con-
structed by the näıve approach. As discussed, the lack of
these edges may prevent security analyses from hinting at
potential vulnerabilities. Given that CBS significantly im-
pacts the call graph, we conclude that the näıve approach
computes an unsound approximation most of the time; the
exception are the projects without instance calls. This clearly
supports the claim that specialized algorithms for libraries
are needed. Additionally, we observe that the more precise
entry point computation leads to less edges in most projects
(shown in column Type Edges in Table 2), but the effect is
small.

The experiments also show that CBS resolution does not
lead to an explosion of the call edges count. The maven-
plugin-api has the most significant increase in the number
of call edges because it depends on three other libraries
in which a lot of CBS targets are found. For example,
the maven-plugin-api defines interfaces that declare meth-
ods with the following signatures: java.lang.String get-

Value(), java.util.Iterator iterator() or java.lang.-

String toString() and methods with these signatures are
often found in the used libraries; in particular in case of
toString(). Yet, even in this worst case, only ≈ 60% of all
edges are due to CBS resolution. The mean is only 16%,
and from Table 4, we can further conclude that the number
of CBS edges decreases significantly (up to 70%) when we
apply the closed-package assumption.

RQ2. To answer this question, we compare the respec-
tive precision of the graphs constructed by LibCHAOPA and
LibCHACPA. We did a quantitative and a qualitative com-
parison. The former is discussed in the following; the latter in
Section 5. The quantitative evaluation compares the number
of call edges in the respective call graphs shown in Table 4.

In all cases — except of the projects without instance calls
— the LibCHACPA graph contains less edges; sometimes up

to 30% less. Surprisingly, we observe differences even in case
of the Scala libraries (scala-compiler, scalatest 2.10, etc.).
A manual inspection of the code revealed that the libraries
contain a minimal amount of Java code, which uses package
and protected visibility. Over all projects the mean call edge
reduction is 9.21% and the number of edges that is added by
CBS resolution is reduced by 50.06% on average. The latter
is due to the fact that a client can not inherit package visible
classes or interfaces under the closed-package assumption
and therefore the amount of possible subtypes is lower in
LibCHACPA. Hence, we conclude that for libraries that make
use of the visibility modifiers, distinguishing between OPA
and CPA is useful.

RQ3. To answer this question, we measure how many
entry points are identified by LibCHACPA w.r.t. LibCHAOPA

and how this affects the call graph.
The reduction in entry points is shown in Table 3. We

observe a reduction of entry points in 93 projects (in the table
only the last five of these seven projects are shown). In the
remaining seven cases, the entry point sets are identical; these
projects all have in common that they do not declare a single
package visible type and at most one package visible method.
Overall, LibCHACPA identifies up to 33% less entry points
and the mean reduction of entry points is 8.04%. However,
the effort dedicated to precise entry point computations done
as part of LibCHACPA are useless, if the library does not
make use of package visibility.

Interestingly, the reduced number of entry points in Lib-
CHACPA does not have an effect of the same magnitude
on the overall call edges, though we can still observe some
effect. For example, for the hsqldb project, we observe a
reduction of the number of entry points by 30% but the
effect on the call graph is only ≈ 2.7%. This is probably
due to the choice of the CHA algorithm as foundation of
our algorithms; most methods that are not in the initial
entry point set are still included in the call graph. It is likely
that the better computation of the entry points would have
a more significant effect in combination with better, e.g.,
context-sensitive, call-graph algorithms.

RQ4. To understand the performance characteristics of
the proposed algorithms, we measured the times to compute
the entry points and the call graphs. Instead of analyzing all
library dependencies, we consider only the public interface of
all third party libraries. Otherwise, the performance and the
set of call edges would be dominated by dependent libraries
(Ldep). For the largest library, 82% of all methods are defined
by the used libraries (Ldep); in 90% of all cases, the library
defines less than 5% of all methods.

The measurements were taken on an Intel i7 (2.4Ghz)
with 6GB memory. The results are shown in Table 5. As
expected, the proposed algorithms are slower than CHA, but
still scale well up to very large libraries. The performance of
the näıve implementation outperforms the two library call
graphs in average by 1.15 seconds. The additional time is
required to perform the more precise computations. However,
this overhead is still acceptable given that the resulting call
graphs are well suited for library analyses.

5. CASE-STUDY: DEAD METHODS IN
THE JDK

To further understand the impact of the proposed algo-
rithms on an analysis that builds on top of them, we con-

480

Table 2: Call Edges with Call By Signature

Project Classes and Interfaces (Ifc.) Call Edges
Library Dependencies Näıve LibCHAOPA Ratios

Class Ifc. Class Ifc.
∑

By Type By Sig. Type Edges CBS Edges

maven-plugin-api 22 3 28,661 3 257 8 118 19 320 8 117 11 203 99.99% 57.98%
httpcore 182 72 28,213 3 150 51 067 92 922 51 026 41 896 99.92% 45.04%
slf4j-log4j12 6 0 28,527 3 178 1 001 1 785 1 001 784 100.00% 43.92%
hsqldb 522 65 28,213 3 150 306 414 449 786 306 110 143 676 99.90% 31.88%
plexus-container-
default

142 45 28,801 3 185 116 515 165 670 116 112 49 558 99.65% 29.67%

hamcrest-core 40 5 28,213 3 150 22 491 22 909 22 463 446 99.88% 1.82%
json 17 1 28,213 3 150 92 533 93 769 92 330 1 439 99.78% 1.32%
cdi-api 25 76 28,259 3 166 12 865 13 015 12 850 165 99.88% 1.15%
jsr305 5 30 28,213 3 150 88 88 88 0 100.00% 0.00%
easymockclassextension 5 2 28,213 3 150 133 133 133 0 100.00% 0.00%

mean (over all projects) 99.89% 16.78%
std dev (over all projects) 0.10% 9.90%

Table 3: Entry Points in OPA and CPA; Pub. is used for public and Pkg. for package private visibility

Project Types Methods Entry Points (EPs) Call Edges
Pub. Pkg.

∑
Pkg. LibCHAOPA LibCHACPA Reduction Reduction

lombok 58 56 242 64 161 108 32.92% 0.02%
hsqldb 189 125 4 687 1 502 4 008 2 739 31.66% 2.73%
guava 370 1 350 13 200 3 562 11 714 8 402 28.27% 0.06%
derby 997 755 23 345 3 875 17 721 13 033 26.45% 0.54%
gson 59 106 957 185 826 608 26.39% 1.47%

scalacheck 2.10 1 997 0 8 651 0 8 266 8 266 0.00% 0.00%
scalac-scoverage-plugin 2.11 172 0 1 068 0 1 006 1 006 0.00% 0.00%
scalatest 2.10 6 755 0 82 680 0 79 197 79 197 0.00% 0.00%
jsr305 35 0 30 1 15 15 0.00% 0.00%
easymockclassextension 7 0 27 0 27 27 0.00% 0.00%

mean (over all projects) 8.04% 0.41%
std dev (over all projects) 7.27% 1.47%

ducted a case study. We implemented an analysis that uses
a call graph to collect all non-entry point methods that are
not called by another method (excluding self-recursive calls).
These methods are then reported as being dead. For the
case study, we build the analysis on top of the three different
call graphs constructed by the näıve algorithm, LibCHAOPA,
and LibCHACPA. The subject library was the part of JDK
1.7.0 update 80 that defines Java’s public API, but which
also contains library-private code (specifically, we analyzed
the code in the packages starting with java and javax). The
results are reported in Table 6.

As shown in the second row of the table, the analyses using
the call graphs computed by the näıve algorithm and Lib-
CHAOPA initially reported the same 218 methods, a much
smaller number compared to 2,119 methods reported by
the analysis on top of the call graph constructed by Lib-
CHACPA. A manual evaluation of the results revealed that
some methods are dead “on purpose”. For example, it is a
common Java idiom to define a private default constructor
to ensure that no instances of the class can be created. This
idiom is, e.g., used by java.lang.Math and always results in
an intentionally dead constructor. We call appearances of
this idiom technical artifacts: Adapting the analysis revealed
that 114 of the initially reported methods belong in this
category (cf. third row in the table).

The manual evaluation further revealed that we must filter
out methods in packages starting with javax.swing.plaf.*.
The respective classes and methods are responsible for the

look and feel of Java GUIs and are — as documented in
the API — generally instantiated or called by reflection.
Given that our case study analysis has no support to identify
reflective calls, we decided to consider all methods in the
respective packages as being called using reflection, hence
not dead. This filtering left us with 100, respectively 680,
dead methods reported by the analyses using the näıve or
LibCHAOPA based call graphs, respectively the LibCHACPA

call graph.
Next, we randomly selected 80 out of the 680 presumable

dead methods to perform a manual inspection. From these
80 methods, 40 methods are also reported based on the
näıve/LibCHAOPA based call graph. Which revealed that,
32 out of the 40 methods (80%) were correctly classified as
dead. From the remaining 40 methods, one further method
was misclassified. Hence, 71 (≈ 89%) out of the 80 reported
methods are indeed dead. The majority of the latter methods
are non-private methods defined in package visible classes.
Some of them were marked as deprecated, some could be
clearly identified as left-over debug or test code, some were
unused method overloads, and others seemed to be overlooked
due to the complexity of surrounding code. In nine cases, we
concluded that the reported methods are (most likely) not
dead, because they seem to be called from native code or via
Java’s reflection mechanism.

Overall, we are confident that we found at least 550
(≈ 80%) true dead methods in the core of the Java Class

481

Table 4: Reduction of call edges from LibCHAOPA compared to LibCHACPA

Call Edges
Project Types Methods LibCHAOPA LibCHACPA Call Edge Reduction

Pub. Pkg. Total Pkg. All CBS All CBS All CBS

httpcore 238 16 1 652 62 92 922 41 896 65 104 15 204 29.94% 63.71%
hsqldb 446 141 10 196 1 880 449 786 143 676 342 577 43 060 23.84% 70.03%
spring-tx 168 37 1 108 70 60 808 17 551 48 331 5 595 20.52% 68.12%
groovy-all 2 905 1 497 37 150 1 467 3 125 366 794 454 2 493 057 280 747 20.23% 64.66%
plexus-container-default 182 5 1 142 17 165 670 49 558 133 112 17 000 19.65% 65.70%

scalac-scoverage-plugin 2.11 172 0 1 068 0 440 868 10 180 438 389 7 701 0.56% 24.35%
scala-compiler 8 557 37 59 147 200 14 476 580 629 696 14 408 370 561 514 0.47% 10.83%
scalatest 2.10 6 755 0 82 680 0 7 780 661 305 601 7 749 991 274 931 0.39% 10.04%
jsr305 35 0 30 1 88 0 88 0 0.00% 0.00%
easymockclassextension 7 0 27 0 133 0 133 0 0.00% 0.00%

mean (over all projects) 9.21% 50.06%
stddev (over all projects) 5.79% 15.64%

Table 5: Measured time for computing the entry point set and constructing the call graph (in seconds)

Types Methods Näıve LibCHAOPA LibCHACPA

Project eps cg
∑

eps cg
∑

eps cg
∑

easymockclassextension 7 27 0.0001 0.0035 0.0036 0.3590 0.6424 1.0014 0.3861 0.6415 1.0276
hamcrest-core 45 275 0.0002 0.2317 0.2319 0.3333 0.8544 1.1877 0.3824 0.8570 1.2394
json 18 128 0.0002 0.2214 0.2216 0.3362 0.8930 1.2292 0.3890 0.8687 1.2577
reflections 96 619 0.0002 0.1908 0.1910 0.3614 0.8317 1.1931 0.4026 0.8191 1.2217
aspectjrt 130 722 0.0002 0.1858 0.1860 0.3544 0.8830 1.2374 0.3885 0.8458 1.2343

groovy-all 4402 37150 0.0086 1.1409 1.1495 0.4074 2.3045 2.7119 0.4684 1.9579 2.4263
gwt-user 5497 46599 0.0092 1.5877 1.5969 0.4193 2.5968 3.0161 0.4786 2.4562 2.9348
scala-library 4899 59519 0.0127 1.4340 1.4467 0.4528 2.5445 2.9973 0.5175 2.3973 2.9148
scalatest 2.10 6755 82680 0.0160 3.2804 3.2964 1.0270 4.5554 5.5824 1.0599 4.9914 6.0513
scala-compiler 8594 59147 0.0578 5.7433 5.8011 1.1644 7.4983 8.6627 0.9313 7.6521 8.5834

mean (over all projects) 0.3826 1.5047 1.5359

Table 6: Number of dead methods found in the JDK
Algorithm näıve/LibCHAOPA LibCHACPA

Reported Methods 218 2 119

Technical Artifacts 114 114
Swing PLAF related 4 1 325

Potentially Dead 100 680

Library using the LibCHACPA based call graph.9 Using a
call graph computed by LibCHAOPA or the näıve call graph
construction algorithm, we identified only ≈ 80(≈ 15%) of
these methods.

6. RELATED WORK
Next, we first discuss general call graph algorithms before

we discuss points-to analyses. The latter are either build
on top of existing call graphs or (implicitly) compute them
on-the-fly. After that, we discuss general approaches that
analyze program fragments.

6.1 Call-Graph Algorithms
Existing call graph algorithms make a closed-world as-

sumption, i.e., they assume the whole program is analyzed,
hence do not fit the needs of libraries.

9These overall quality results are in line with the results
reported by Eichberg et al. in [11]

Grove et al. present a framework that allows uniform mod-
eling of multiple context-sensitive and context-insensitive call
graph algorithms [13]. They distinguish three contour selec-
tion functions that allow varying levels of context-sensitivity.
Thereby, a contour denotes each context-sensitive version
of a procedure. These functions enabled them to extend
Shivers k-CFA [25] to the more precise k-l-CFA algorithm.
Contrary to their framework, that parameterizes call graph
algorithms in terms of precision, we propose a framework
which parameterizes library call graph algorithms w.r.t. their
usage scenario.

Bacon and Sweeney [5] show that rapid type analysis
(RTA) improves over CHA by only considering subtypes that
are instantiated by the considered application. In particular,
RTA used for applications benefits from the fact that libraries
usually define many types that are not used by an application,
but nevertheless will be considered for call edges in CHA. In
Section 3, we outlined how our techniques could generalize
to RTA.

Tip and Palsberg [31] attribute different precisions of call
graphs to the number of sets used to approximate run-time
values of expressions. They introduce the algorithm family
CTA, FTA, MTA, and XTA. CTA uses distinct sets for
classes, MTA uses distinct sets for classes and fields, FTA uses
distinct sets for classes and methods, and XTA uses distinct
sets for classes, fields, and methods. These algorithms can
be adapted for analyzing libraries in similar ways as the
adaptations discussed for RTA.

482

Sundaresan et al. [30] introduce declared-type analysis
(DTA) and variable-type analysis (VTA). The more popular
VTA uses a type propagation graph, a directed graph where
nodes represent variables and edges assignments between
those. Sets of possible types are then assigned to each node,
representing the runtime type a variable could potentially
point to. Starting with allocation sites, these type sets
are propagated along the directed edges of the graph. To
determine possible call targets at call sites, the type set of
the receivers node is intersected with its statically possible
subtypes. Both can be adapted for analyzing libraries by
considering all possible subtypes for parameters of application
callable methods and applying CBS at call sites where the
receiver may be instantiated by the application.

6.2 Points-to Analysis
Given a points-to analysis, it is easy to generate a call

graph from its results, because a points-to analysis knows
the runtime types a variable — used as receiver of a call —
can point to. Even if points-to analyses is an extensively
investigated field of research [21, 27, 28, 29, 32, 33, 34], we
are not aware of works comprehensively discussing points-
to analysis for analyzing libraries only. In particular, in
such a scenario not all allocation sites can be known. The
correct result to what a parameter of a method callable by
an application may point to is therefore not well defined;
i.e., if the user creates new subtypes which extend a library
class and which additionally implement a library interface.
Moreover, which result is useful may depend on the use case
the points-to analysis is applied to. For example, one could
use a single allocation site to represent unknown allocation
sites outside the library, or multiple unique allocation sites
for distinct entry points into the library. While the former is
cheaper to compute and useful to answer may alias problems,
the latter yields wrong results. Contrary, for must alias
problems the former is wrong.

Lately Dietrich et al. [10] presented a points-to analysis via
transitive closure structure. They evaluate their approach
on the library shipped with OpenJDK and can compute
precise results in less than a minute. While they evaluate
on a library only, they do not discuss whether the results
remain correct in cases where a variable may point to an
unknown allocation site outside the library.

Rountev and Ryder [23] present an approach to construct
summary information for libraries, which assumes all possible
client applications. The summaries can be applied when
constructing points-to information for a client application.
They show that the results of their approach are equal to
those computed by a whole-program analysis. They assume
clients to be able to use all exported variables. While these
include function references, a discussion is missing as what
to include in exported variables for soundness and what
can be excluded to increase precision. For example, some
function references must be included to avoid trusted method
chaining attacks as discussed in Section 2.2 and others may
be excluded under closed-package assumption to increase
precision.

Allen et al. [3] discuss how to compute points-to informa-
tion, when a Java library is analyzed in isolation. The core
idea is to determine the so-called most general application
(MGA) that subsumes all possible applications by using a
single abstract allocation site per statically declared type
of an entry point. Yet, a discussion about what the correct

result of a points-to analysis should be is missing. From
their description it seems that the approach misses call edges
due to possible library extensions as discussed in Section 2.2,
which would violate of their MGA assumption.

To recap, at first glance, many of the works published
in the field seem to address the problem of computing call
graphs (or the larger points-to problem) for libraries only. As
argued, they turn out to address only parts of the problem; in
particular, they lack systematic considerations of the issues
related to inheritance of library classes.

6.3 Program Fragment Analysis
Program fragment analysis refers to analysis techniques

capable of analyzing parts of a program. So far, existing work
in this field of research only addresses scenarios in which the
analyzed program is the application. We address in this work
the opposite case: analyzing a library while not knowing the
client application.

Ali and Lhoták present the tool Cgc, capable of creating
sound call graphs without analyzing library code [1]. It
makes use of the separate compilation assumption, i.e., that
the library has been compiled without access to the code
of the application. Hence, the library cannot instantiate
application classes. Building upon this work, the authors
introduce the tool Averroes, which generates placeholder
code behaving as an over-approximation of the original library
code [2].

Rountev and Ryder [22] present a fragment class anal-
ysis for testing. They generate a main method that over-
approximates the behavior of a test suite, which enables them
to apply existing whole-program analyses on a program’s
fragment. Their approach addresses the computation of test
coverage only, making use case specific assumptions that do
not hold in general.

7. CONCLUSION
In this paper, we have discussed the design space for call

graph algorithms for libraries. We have in particular dis-
cussed the issues related to the use of established call graph
algorithms and have discussed how to adapt the classical
CHA algorithm to make it useable for the construction of
library call graphs. Constructing call graphs for libraries
requires – compared to the construction of call graphs for ap-
plications and components – necessarily different algorithms
to satisfy the needs of different categories of subsequent
analyses. As the evaluation has shown, both algorithms are
necessary as the number of call edges in the call graphs differ
significantly and each algorithm is able to identify unique
issues. In future work, we will analyze how other established
call graph algorithms can be adapted to the analysis of li-
braries to determine the best suited algorithm w.r.t. the
precision/performance ratio.

8. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their helpful com-

ments. This work was supported by the DFG as part of
CRC 1119 CROSSING, by the European Research Council,
grant No. 321217, and by the German Federal Ministry of
Education and Research (BMBF) within CRISP (www.crisp-
da.de).

483

9. ARTIFACT DESCRIPTION
As a companion, we provide the following artifacts:

• The list of dead methods found in the Oracle JDK7 up-
date 80 (Windows) using the three discussed approaches
(näıve, open- and closed package assumption).

• The source code of the implementation of the proposed
algorithm.

• A docker container which contains the compiled ver-
sion of the complete OPAL framework as well as the
complete runtime to (re)compile and run OPAL.

In the following we will guide you through the necessary
steps to reproduce the results in the paper’s evaluation.
Though it is possible to build OPAL on one’s own, it is
recommended to use the pre-configured docker container. It
contains a pre-build version of OPAL that was used as the
foundation for the paper. The proposed artifact (≈ 2GB) is
publicly available on DockerHub10.

9.1 Getting the Artifact
First, docker must be installed11. After that, it is then

possible to use the docker command line tools to download
the container:

$docker pull mreif/fse2016:evaluation

The container was tested using Windows 10 and MacOS X
10.11. Docker was configured with 6GB of RAM and 8 cores.

9.2 Usage
After pulling the container it can be run using:

$docker run -ti mreif/fse2016:evaluation

From now on you have multiple options. The first option is
to reproduce the results of our evaluation. The second option
is to generate statistics related to arbitrary call graphs, e.g.,
the number of call edges or entry points of a call graph.

Once the container is started, you will find yourself in the
directory of the evaluation project.

9.2.1 Reproducing the Evaluation
In case you want to reproduce the paper’s evaluation, you

must use the following command:

sbt run

This will bring up a menu with two different options:

[1] CallBySignatureCountEvalationAnalysis
[2] EvaluationStarter

To start the evaluation you must run the EvaluationStarter
program (number 2). It may run – depending on your avail-
able resources – up to 1 hour. The generated data derived
from all constructed call graphs will be written to the file
/home/libcg/output/results.txt in your docker container.
For subsequent analyses it is recommended to copy the file
to your host system using:

$docker ps -alq
OUTPUT: <container-id>
$docker cp
| <container-id>:/home/libcg/output/results.txt
| <path-on-your-system>

10https://hub.docker.com/r/mreif/fse2016/
11https://www.docker.com/

9.2.2 Generate Custom Call Graph Numbers
If you want to analyze a custom JAR file, you must down-

load the JAR file of the target library as well as all necessary
dependencies. To retrieve them, use the wget tool as follows:

wget -P /home/libcg/customLibraries/ <url to jar>

Before running the analysis, make sure that you are in the di-
rectory of the evaluation project (/home/libcg/evaluation).
You can then type sbt to start the sbt console. If you need
help in specifying the parameters you can enter the run help

command. A custom analysis would look like:

run -cp="/home/libcg/customLibraries/junit-4.12.jar"
-libcp="/usr/lib/jvm/java-8-openjdk-amd64/jre/lib"
-analysisMode=library_with_closed_packages_assumption

The custom JAR will be analyzed now. The output will
be printed on the console. Note that the entry points of
the call graph will be calculated from the projects on the
class path (-cp parameter) and that the libraries specified
using -libcp are only used to build the overall class hierarchy.
The different assumptions under which the call graphs can
be build can be passed via the analysisMode parameter.
All available modes are shown in the help command of the
analysis.

9.3 License
The source code of the OPAL framework and the artifacts

are licensed under the BSD 2-Clause license.

10. REFERENCES
[1] K. Ali and O. Lhoták. Application-only call graph

construction. In Proceedings of the 26th European
Conference on Object-Oriented Programming,
ECOOP’12, pages 688–712, Berlin, Heidelberg, 2012.
Springer-Verlag.

[2] K. Ali and O. Lhoták. Averroes: Whole-program
analysis without the whole program. In G. Castagna,
editor, ECOOP 2013 - Object-Oriented Programming -
27th European Conference, Montpellier, France, July
1-5, 2013. Proceedings, volume 7920 of Lecture Notes in
Computer Science, pages 378–400. Springer, 2013.

[3] N. Allen, P. Krishnan, and B. Scholz. Combining
type-analysis with points-to analysis for analyzing java
library source-code. In Proceedings of the 4th ACM
SIGPLAN International Workshop on State Of the Art
in Program Analysis, SOAP 2015, pages 13–18, New
York, NY, USA, 2015. ACM.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’14, pages 259–269, New York, NY, USA, 2014.
ACM.

[5] D. F. Bacon and P. F. Sweeney. Fast static analysis of
c++ virtual function calls. In Proceedings of the 11th
ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications,
OOPSLA ’96, pages 324–341, New York, NY, USA,
1996. ACM.

484

[6] M. Bartoletti, P. Degano, and G. Ferrari. Static
analysis for stack inspection. Electronic Notes in
Theoretical Computer Science, 54:69 – 80, 2001.
ConCoord: International Workshop on Concurrency
and Coordination (Workshop associated to the 13th
Lipari School).

[7] F. Besson, T. Blanc, C. Fournet, and A. Gordon. From
stack inspection to access control: a security analysis
for libraries. In Computer Security Foundations
Workshop, 2004. Proceedings. 17th IEEE, pages 61–75,
June 2004.

[8] B.-M. Chang. Static check analysis for java stack
inspection. SIGPLAN Not., 41(3):40–48, Mar. 2006.

[9] J. Dean, D. Grove, and C. Chambers. Optimization of
object-oriented programs using static class hierarchy
analysis. In M. Tokoro and R. Pareschi, editors,
ECOOP’95 — Object-Oriented Programming, 9th
European Conference, Åarhus, Denmark, August 7–11,
1995, volume 952 of Lecture Notes in Computer Science,
pages 77–101. Springer Berlin Heidelberg, 1995.

[10] J. Dietrich, N. Hollingum, and B. Scholz. Giga-scale
exhaustive points-to analysis for java in under a minute.
In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA 2015, pages 535–551, New York, NY, USA,
2015. ACM.

[11] M. Eichberg, B. Hermann, M. Mezini, and L. Glanz.
Hidden truths in dead software paths. In Proceedings of
the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, pages 474–484,
New York, NY, USA, 2015. ACM.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification, 2000. Sun Microsystems, 2009.

[13] D. Grove and C. Chambers. A framework for call graph
construction algorithms. ACM Trans. Program. Lang.
Syst., 23(6):685–746, Nov. 2001.

[14] B. Hermann, M. Reif, M. Eichberg, and M. Mezini.
Getting to know you: Towards a capability model for
java. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015,
pages 758–769, New York, NY, USA, 2015. ACM.

[15] S. Koivu. Java trusted method chaining
(cve-2010-0840/zdi-10-056).
http://slightlyrandombrokenthoughts.blogspot.de/
2010/04/java-trusted-method-chaining-cve-2010.html,
apr 2010.

[16] L. Koved, M. Pistoia, and A. Kershenbaum. Access
rights analysis for java. In Proceedings of the 17th ACM
SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’02,
pages 359–372, New York, NY, USA, 2002. ACM.

[17] W. Landi and B. G. Ryder. Pointer-induced aliasing: A
problem classification. In Proceedings of the 18th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’91, pages 93–103, New
York, NY, USA, 1991. ACM.

[18] W. Landi and B. G. Ryder. A safe approximate
algorithm for interprocedural aliasing. In Proceedings of
the ACM SIGPLAN 1992 Conference on Programming
Language Design and Implementation, PLDI ’92, pages
235–248, New York, NY, USA, 1992. ACM.

[19] J. Lerch, B. Hermann, E. Bodden, and M. Mezini.
Flowtwist: Efficient context-sensitive inside-out taint
analysis for large codebases. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages
98–108, New York, NY, USA, 2014. ACM.

[20] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph reachability.
In Proceedings of the 22Nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
POPL ’95, pages 49–61, New York, NY, USA, 1995.
ACM.

[21] A. Rountev and S. Chandra. Off-line variable
substitution for scaling points-to analysis. In
Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation,
PLDI ’00, pages 47–56, New York, NY, USA, 2000.
ACM.

[22] A. Rountev, A. Milanova, and B. G. Ryder. Fragment
class analysis for testing of polymorphism in java
software. IEEE Trans. Softw. Eng., 30(6):372–387,
June 2004.

[23] A. Rountev and B. G. Ryder. Points-to and side-effect
analyses for programs built with precompiled libraries.
In Proceedings of the 10th International Conference on
Compiler Construction, volume 2027 of CC ’01, pages
20–36. Springer Berlin Heidelberg, 2001.

[24] M. Sagiv, T. Reps, and S. Horwitz. Precise
interprocedural dataflow analysis with applications to
constant propagation. Theoretical Computer Science,
167(1–2):131 – 170, 1996.

[25] O. Shivers. Control flow analysis in scheme. In
Proceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation,
PLDI ’88, pages 164–174, New York, NY, USA, 1988.
ACM.

[26] S. Sinha, M. J. Harrold, and G. Rothermel.
Interprocedural control dependence. ACM Trans. Softw.
Eng. Methodol., 10(2):209–254, Apr. 2001.

[27] M. Sridharan and R. Bod́ık. Refinement-based
context-sensitive points-to analysis for java. In
Proceedings of the 27th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’06, pages 387–400, New York, NY, USA, 2006.
ACM.

[28] M. Sridharan, D. Gopan, L. Shan, and R. Bod́ık.
Demand-driven points-to analysis for java. In
Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’05, pages
59–76, New York, NY, USA, 2005. ACM.

[29] B. Steensgaard. Points-to analysis in almost linear time.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
POPL ’96, pages 32–41, New York, NY, USA, 1996.
ACM.

[30] V. Sundaresan, L. Hendren, C. Razafimahefa,
R. Vallée-Rai, P. Lam, E. Gagnon, and C. Godin.
Practical virtual method call resolution for java. In
Proceedings of the 15th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’00, pages 264–280, New York,

485

http://slightlyrandombrokenthoughts.blogspot.de/2010/04/java-trusted-method-chaining-cve-2010.html
http://slightlyrandombrokenthoughts.blogspot.de/2010/04/java-trusted-method-chaining-cve-2010.html

NY, USA, 2000. ACM.

[31] F. Tip and J. Palsberg. Scalable propagation-based call
graph construction algorithms. In Proceedings of the
15th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications,
OOPSLA ’00, pages 281–293, New York, NY, USA,
2000. ACM.

[32] G. Xu and A. Rountev. Merging equivalent contexts for
scalable heap-cloning-based context-sensitive points-to
analysis. In Proceedings of the 2008 International
Symposium on Software Testing and Analysis, ISSTA
’08, pages 225–236, New York, NY, USA, 2008. ACM.

[33] G. Xu, A. Rountev, and M. Sridharan. Scaling
cfl-reachability-based points-to analysis using
context-sensitive must-not-alias analysis. In Proceedings
of the 23rd European Conference on ECOOP 2009 —
Object-Oriented Programming, Genoa, pages 98–122,
Berlin, Heidelberg, 2009. Springer-Verlag.

[34] Q. Zhang, X. Xiao, C. Zhang, H. Yuan, and Z. Su.
Efficient subcubic alias analysis for c. In Proceedings of
the 2014 ACM International Conference on Object
Oriented Programming Systems Languages &
Applications, OOPSLA ’14, pages 829–845, New York,
NY, USA, 2014. ACM.

486

	Introduction
	Why Library Call Graph Algorithms?
	A Library's Private Implementation
	Covering Possible Library Extensions
	Closed-Package Usage Scenarios

	The Call-Graph Algorithms
	Entry Point Computation
	Call-By-Signature for Libraries
	Summary

	Empirical Study
	Setup
	Discussion

	Case-Study: Dead Methods in the JDK
	Related work
	Call-Graph Algorithms
	Points-to Analysis
	Program Fragment Analysis

	Conclusion
	Acknowledgements
	Artifact Description
	Getting the Artifact
	Usage
	Reproducing the Evaluation
	Generate Custom Call Graph Numbers

	License

	References

