
Design Your Analysis
A Case Study on Implementation Reusability of Data-Flow Functions

Johannes Lerch Ben Hermann
Technische Universität Darmstadt, Germany

{lastname}@cs.tu-darmstadt.de

Abstract
The development of efficient data flow analyses is a complicated
task. As requirements change and special cases have to be consid-
ered, implementations may get hard to maintain, test and reuse. We
propose to design these analyses regarding the principle of sepa-
ration of concerns. Therefore, in this paper we present a reference
design for data flow analyses in the context of the IFDS/IDE al-
gorithm. We conducted a case study in order to inspect the level
of reuse that can be achieved with our design and found it to be
helpful for the efficient development of new analyses.

Categories and Subject Descriptors F3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis

General Terms Design

Keywords Separation of concerns, static analysis, design, ifds,
ide, flow function

1. Introduction
The development of static analyses is a challenging task. It is –
like most software development tasks – an incremental process.
New requirements arise and existing requirements change during
the development and in most cases it is not obvious how the final
result will look like. So, learning from the software engineering
field, separation of concerns and reusability are key to efficiently
develop these analyses.

Naturally, it is impracticable to start implementing an analysis
from scratch. Analysis frameworks such as Soot [9], WALA [4]
or OPAL [5] provide basic functionality to be reused by special-
ized analyses. To aid the analysis developer’s task these frame-
works provide abstractions and intermediate representations to
avoid the need of dealing with low-level problems. On top of that,
framework-like algorithms like the IFDS [7] and IDE [8] algo-
rithms provide means to divide large problems into smaller parts
enabling developers to focus only on analysis problem specific
tasks.

However, the amount of work to develop a specialized analysis
still is tremendous. The considerations that have to be made for the

[Copyright notice will appear here once ’preprint’ option is removed.]

analysis have to be encoded in the abstractions of the framework it
is build upon. As soon as the analysis grows in its implementation
it may become hard to maintain. Something that started as a proto-
type becomes too complicated to change. Features tend to become
intertwined making the reuse of an analysis feature a challenging
task, although many aspects of static analyses are identically han-
dled across multiple analyses addressing different problems.

We found this to be the case while developing FlowTwist [6], a
taint-flow analysis for the detection of so-called Confused Deputies
in Java. In this paper we therefore contribute a design approach that
effectively separates different analysis aspects and implementations
that are otherwise often interwoven. We focus on IFDS and IDE
analysis problems, discussed on examples using the Soot frame-
work and Heros implementation [2] of the IDE algorithm.

In a case study we found this design to be very helpful to
reuse analysis components and efficiently take on novel analysis
problems.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present the current design approach takes for IFDS/IDE
analyses. Section 3 outlines the proposed design and compares it to
the current approach. We discuss the details and advantages of our
design in Section 4. We briefly inspect related work in Section 5
and conclude the paper with a summary in Section 6.

2. State-of-the-Art
Data-flow analyses can be approached with the IFDS [7] and
IDE [8] algorithms. These algorithms provide a framework to
address many analysis problems by expressing them as a graph-
reachability problem and therefore take away a large amount of
implementation work from the developer of the analysis. Both al-
gorithms require an interprocedural control flow graph, which can
be easily provided by most static analysis frameworks, e.g., Soot.
To define the actual analysis problem developers provide so-called
flow functions. Flow functions define the effects that specific edges
in the interprocedural control flow graph have on an incoming
fact. A fact can be anything that needs to be tracked in the spe-
cific analysis, e.g. a value coming from user input. A flow function
may generate new facts, pass over existing facts or specify that the
incoming fact will not hold at the edges destination, commonly
referred to as killing the fact.

For example, consider a simple data flow analysis that tracks
values created at a source statement, e.g. a user input, and checks
if these values flow to a sink statement, e.g. a database command.
When the flow function is called to evaluate an assignment state-
ment where a tracked value is on the right hand side of the assign-
ment, the flow function should return the incoming fact, because
the variable of the right hand side is still carrying the tracked value,
as well as a new fact representing the variable of the left hand side
of the assignment, because it is now carrying that value as well. In
the opposite case, when a variable gets overwritten with a constant,

1 2015/7/21



1 public interface FlowFunctions<N, D, M> {
2 FlowFunction<D> getNormalFlowFunction(N curr, N succ);
3 FlowFunction<D> getCallFlowFunction(N callStmt, M destinationMethod);
4 FlowFunction<D> getReturnFlowFunction(N callSite, M calleeMethod, N exitStmt, N returnSite);
5 FlowFunction<D> getCallToReturnFlowFunction(N callSite, N returnSite);
6 }

1 public interface FlowFunction<D> {
2 Set<D> computeTargets(D source);
3 }

Figure 1. Flow Function interfaces of the Heros framework to be implemented by specific analyses

the flow function should kill the fact representing the variable on
the left hand side of the assignment.

Heros [2] is an open-source implementation of the IFDS and
IDE algorithms. In Heros there are two interfaces that have to be
implemented in order to specify these flow functions (c.f. Figure
1). The first interface is FlowFunctions, which provides instances
of the second interface FlowFunction that handle specific edges
in the interprocedural control flow graph. Edges are categorized by
this procedure into normal edges, call edges, return edges, and call-
to-return edges. Normal edges represent intraprocedural flow like
assignments, conditions and loop. Call edges span from a call site
to the first statement of a called method. Return edges reach from
an exit point of the method back to the call site the method call
originated from. Call-to-return edges span over the call.

This way IFDS and IDE algorithms allow the analysis developer
to focus on the effects of each edge in isolation and therefore
describe the behavior of the analysis very naturally. Nevertheless,
even in this small focus on a single edge the implementation can
become very complex with growing requirements to handle more
and more specific situations.

In the example above for a complete analysis, its developer has
to handle many more features of the language aside from assign-
ments. This includes reading and writing instance fields and static
fields, cast expressions, boxing and unboxing of types, exceptions,
reflection, mapping of actual parameters to formal parameters at
call edges and return values at return edges. Moreover, it might
be too costly to precisely analyze the behavior of data structures
that are used in the program, therefore the effects of these might
be addressed by specification. This is commonly the case for ar-
rays and collections. Depending on the type of analysis, it might
also be necessary to handle the construction and concatenation of
Strings, for instance using the StringBuilder class of Java. Further-
more, when not analyzing the complete program including its used
libraries and the runtime library, flow functions have to account for
the effect on facts passed over calls to library functions. Similarly,
there might be definitions summarizing the effects of functions im-
plemented in other languages, e.g. native code. Besides handling
all these language features, flow functions also need to be aware of
special function calls in the context of the analysis. For instance,
an analysis tracking user input might kill facts when input data is
treated with a special sanitization function.

During the development of FlowTwist [6], we went through the
experience that implementations respecting all of those concerns in
a single flow function become hard to maintain, difficult to test and
impossible to reuse. In addition to our own experience, we looked
at implementations of other developers finding that this seems to be
a common result, e.g., FlowDroid [1] a data and information flow
analysis for Android based on Heros contains more than 400 lines
of code for handling normal flow functions alone, not counting
code of called helpers. We thus propose to separate the different
concerns of a flow function better and present our proposal to do
this in the next section.

3. Design
We want to achieve that different concerns can be expressed in dif-
ferent isolated classes. Ideally, each concern being one implemen-
tation of the FlowFunction interface. But, it is not possible to eas-
ily separate all concerns as some concerns depend on others. For
example, in a taint analysis one concern of a flow function is the
propagation of facts through assignments so that facts holding at
the right hand side get propagated to the left hand side. At the same
time, we might have another concern that we never want to track
values of primitive data types. Therefore, facts are killed if they are
propagated through a cast expression or being unboxed. However,
there is a dependency between these two concerns, because we do
not want to propagate any fact at an assignment if a second concern
claims the fact should be killed instead.

In order to separate concerns of a flow function, we introduce a
new interface Propagator shown in Figure 2. Each implementa-
tion of that interface reflects one specific concern. Bundled together
these Propagator implementations will behave like an implemen-
tation of the Heros interface FlowFunction. Thus, our approach
represents a functional equivalent to the FlowFunction interface
while at the same time separating concerns from each other. The
new data structure KillGenInfo is used as the return type instead
of a set of facts. In Heros a concern that does not affect the source
fact has to return the source fact and does not return the source fact
if it wants to signal the fact should be killed. We opt for a more ex-
plicit API explicitly communicating a kill of a fact. Therefore, we
use the KillGenInfo data structure. The data structure is a named
pair holding a boolean flag indicating if the source fact should be
killed and a set of facts that should be generated, which does not
require to include the given source fact.

To deal with dependencies between concerns, we group in-
stances of the Propagator interface into multiple phases, whereas
each phase can contain multiple Propagators as shown in Fig-
ure 3. Processing of Propagators of the same phase are not al-
lowed to affect each other, while the processing of each phase
depends on the result of its preceding phase. Actually, if any
Propagator of a phase decides that the source fact should be
killed, the succeeding phases will not be processed at all. But,
Propagators of the same phase will still be processed indepen-
dently, meaning Propagators of a single phase may be processed
in arbitrary orders or even in parallel. The input fact is the same
source fact for all phases and does not depend on the generated
facts of preceding phases. Each Propagator may generate new
facts. At the end of the process the union set over all facts propa-
gated by all phases is built. Therefore, the processing in phases is
not a processing pipeline, i.e., the input of a phase is not the output
of the preceding phase. However, the execution of a succeeding
phase depends on the preceding phase.

To adapt Heros-style FlowFunctions to our phases-propagators
design, we developed the processing of phases as implementations
of the FlowFunction interface as shown in Figure 4. Phases are
defined as a two-dimensional array of type Propagator. The first

2 2015/7/21



1 public interface Propagator<N, D, M> {
2 boolean canHandle(D fact);
3 KillGenInfo<D> propagateNormalFlow(D source, N curr, N succ);
4 KillGenInfo<D> propagateCallFlow(D source, N callStmt, M destinationMethod);
5 KillGenInfo<D> propagateReturnFlow(D source, N callSite, M calleeMethod, N exitStmt, N returnSite);
6 KillGenInfo<D> propagateCallToReturnFlow(D source, N callSite);
7 }

Figure 2. Propagator Interface

Ph
as

e

F

U

FFF

FFF

FFF

gen

gen

no kill

kill

Ph
as

e

Propagators

Ph
as

e

Propagators

Propagators

Figure 3. Overview on fact handling

1 Set<D> computeTargets(D source) {
2 boolean killed = false;
3 Set<D> gens = new HashSet<D>();
4 for(Propagator<D>[] phase : phases) {
5 for(Propagator<D> propagator : phase) {
6 if(propagator.canHandle(source)) {
7 KillGenInfo kgi = propagate*(source, ...);
8 killed |= kgi.kill;
9 gens.addAll(kgi.gens);

10 }
11 }
12 if(killed)
13 break;
14 }
15 return gens;
16 }

Figure 4. Processing of Phases

1 phases = new Propagator[][] {
2 {
3 new PrimitiveTypesKiller(),
4 new PermissionCheckPropagator(),
5 /* ... */
6 },
7 {
8 new AssignmentPropagator(),
9 new FieldAccessPropagator(),

10 new StringBuilderPropagator(),
11 /* ... */
12 },
13 {
14 new SinkHandler(),
15 /* ... */
16 }
17 };

Figure 5. Phase Configuration

dimension reflects each phase while the second dimension contains
the Propagator instances of each respective phase. The inner loop
collects generated facts by the Propagator instances of a phase.
The outer loop cycles over all phases until all of them are processed
or some Propagator returns that the source fact should be killed.

An example configuration for a data flow analysis where the
phases are implemented in form of a two-dimensional array is
shown in Figure 5. In the presented example, the first phase con-
tains Propagators reflecting the sanitization of data flows, i.e. it
may kill facts under certain conditions. If a fact survives that phase,
the second phase handles data flow propagations, i.e., assignments,
field processing, calls, etc. The last phase contains a Propagator
that is generating a report if a fact has reached a sink, i.e. the anal-
ysis found a data flow from a source statement to a sink statement.

In this example, it becomes obvious that the separation of con-
cerns is helpful. Some of the Propagator implementations are
very general ones that can be reused across many different analyses.
For instance, the Propagators of the second phase can be used for
any data flow analysis, while the Propagators in the first and last
phase may be different for other analyses. It might be even the case
that more (or less) phases are required for different analyses. Note
that this can be done as easy as adding an element to the array.
In conclusion, our design easily separates different analysis con-
cerns, but centralizes their combination to this end that a specific
analysis can be formed by constructing a phase array from existing
Propagator implementations. Thus it allows reusing Propagator
implementations.

4. Discussion
We initially became aware of the problem that implementations of
flow functions become hard to maintain and hard to test when we
started to implement FlowTwist [6], an analysis to find confused
deputy problems in the Java Class Library. At some point we
changed its design to the design presented here. In the following
we discuss the experiences we gathered after that design change on
an analysis on which we continued development for over two years
already.

3 2015/7/21



FlowTwist is a taint analysis that handles data flows of arbitrary
types, except primitive data types, which are always filtered. This
means that the propagated fact represent if variables are tainted
by unsafe input data. Hence, we use the terms taint and fact as
synonyms here. The analysis contains an implementation of the
Propagator interface that handles assignments and instance fields.
Static fields have to be handled differently than instance fields,
therefore an additional Propagator is used. In FlowTwist we have
to track Strings, therefore we used two separate Propagator im-
plementations to handle StringBuilder and other operations on
String, for example String.valueOf. The Propagator imple-
mentation for StringBuilder detects if taints are passed into a
StringBuilder instance and generates facts now tracking the re-
spective StringBuilder instance. If a String is generated from
a tracked StringBuilder instance the generated value is being
tracked. Using the suggested design, this rather special treatment
of a specific type is encapsulated in a separate class. In a straight-
forward implementation this treatment would be scattered all over a
flow function implementation as it requires to detect different inter-
actions, i.e. arguments passed to StringBuilder objects (via call
edges) as well as retrieving values from StringBuilder objects
(via return edges).

FlowTwist also uses Propagator implementations very spe-
cific to its analysis problem, like the handling of source statements,
i.e., initially mapping zero facts to taint facts, implementations for
killing facts passed over permission checks, and lastly implemen-
tations to detect taint facts reaching sink statements.

For experiments and to evaluate multiple approaches, FlowTwist
consists of multiple variations of the analysis. One configuration
represents the full-featured analysis. Another smaller configuration
is used in an experiment, in which less statements of interest are
considered to perform experiments on the scalability. This variation
does not affect how assignments have to be processed, but requires
slight changes in the source and sink handling. In a straightforward
implementation this variation would have to be encoded by mul-
tiple conditions checking which variation is currently used which
will be scattered across the whole flow function implementation.
By using the suggested design, there are just two slightly different
versions of the phase configuration like the one shown in Figure 5.

Another more challenging variation configures the analysis so
that it is performed only in a forward direction through the inter-
procedural control flow graph, while in the full-featured analysis
it starts in the middle of the program performing a backward and
a forward analysis. Performing the analysis backward through the
interprocedural control flow graph requires a different processing
of assignments, calls, and returns. While starting the analysis in
the middle of the program requires a different handling of source
and sink statements as well. Here again, we were able to reuse
Propagator implementations across the variations and define each
variation as a two-dimensional phases configuration array.

The reuse case within one analysis problem through variations
might be a special case for the FlowTwist project. Therefore, we
conducted a small case study and tried to reuse implementations for
a different analysis problem. Namely, we implemented an analysis
to detect SQL-Injection, Command-Injection, and XSS vulnerabil-
ities in web applications. These problems are data flow problems
in nature and therefore require handling of assignments, calls, re-
turns, etc. As we separated the implementation for these concerns
from the part specific to the analysis problem, we were able to reuse
these Propagator implementations. Actually, it turned out that the
only Propagator implementations we have to exchange by other
implementations are the ones concerned with source, sanitization,
and sink handling. This means that we were able to handle a very
different analysis problem just by providing a new phase configu-
ration. Even better, the code bases for both problems will not divert

as they can be naturally kept in the same project as there is only one
single place where dependencies between these are configured: the
phase configuration.

While we implemented the suggested design as part of an anal-
ysis using Heros, it would also be possible to integrate the phase
processing in Heros itself and provide the Propagator interface to
the specific analysis implementations. There is one drawback that
has to be considered when doing this. In the current state, Heros
allows caching of FlowFunction implementations. The cache is
used to determine if for the same edge the analysis was already
asked to create a FlowFunction instance. Potentially, this can be
used to precompute all flow functions for the whole program. Nev-
ertheless, for a concrete fact the flow function has to be evaluated
eventually. In our experience, this evaluation is the expensive pro-
cessing part compared to the creation of a FlowFunction instance,
because in most scenarios it is not possible to determine that a flow
function for a specific edge will always generate some specific fact
or always kill the incoming fact. Most of the times, such decisions
depend on the concrete source fact passed into the flow function. In
summary, at the cost of a cache lookup a class instantiation is saved
on cache hit, i.e., an analysis with many cache misses might even
be faster without the cache. Therefore, we recommend to integrate
our proposed design allowing to separate concerns.

5. Related Work
As the requirements for static analyses steadily expand, their im-
plementation is exposed to the risk of getting hard to maintain and
to test. On the other side, developers feel the need to reuse parts
of already implemented analyses in the creation of new ones. This
puts a great pressure on the design of analysis implementations,
which is only recent a subject in scientific literature.

With TS4J [3] Eric Bodden presents a design approach using
Evans and Fowler’s fluent interfaces. This design is used to express
properties for a typestate analysis. By also implementing behavior
into the fluent interfaces rather than just using it for configuration
of the analysis, this approach is quite similar to our approach as
analysis abstractions are also modified/created by the configuration
objects.

Eichberg et al. present a design to facilitate the implementation
of static analyses in a product line approach [5]. Using their OPAL
framework analysis components can be combined in many different
ways to adapt them to the current problem. This also separates
the concerns of an analysis very efficiently and leads to an easier
implementation of new analyses.

6. Conclusion
We found and discussed in detail that implementations of data-
flow functions have to address many different concerns. Therefore,
straightforward implementations tend to intertwine different con-
cerns making them hard to reuse, test, and maintain. We suggested
a design that separates concerns successfully and discussed in the
context of a taint analysis how the design can be implemented and
used to achieve maintainability and testability. In a case study we
confirmed the reusability of implementations addressing concerns
that are used across multiple targeted analysis problems. To provide
the suggested design to everyone without the need of implementing
it again and again, we close with the recommendation to integrate
our design directly into the Heros framework.

Acknowledgments
This work was supported by the BMBF within EC SPRIDE, by the
BMBF within the Software Campus initiative (01IS12054) and by
the Hessian LOEWE excellence initiative within CASED.

4 2015/7/21



References
[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,

Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for an-
droid apps. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, pages
259–269, New York, NY, USA, 2014. ACM.

[2] E. Bodden. Inter-procedural data-flow analysis with ifds/ide and soot.
In Proceedings of the ACM SIGPLAN International Workshop on State
of the Art in Java Program Analysis, SOAP ’12, pages 3–8, New York,
NY, USA, July 2012. ACM.

[3] E. Bodden. Ts4j: A fluent interface for defining and computing types-
tate analyses. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on the State of the Art in Java Program Analysis, SOAP ’14,
pages 1–6, New York, NY, USA, 2014. ACM.

[4] J. Dolby, S. J. Fink, and M. Sridharan. T.j. watson libraries for analysis
(wala). URL http://wala.sf.net/.

[5] M. Eichberg and B. Hermann. A software product line for static
analyses: the OPAL framework. In SOAP ’14: Proceedings of the 3rd
ACM SIGPLAN International Workshop on the State of the Art in Java
Program Analysis, pages 1–6, New York, NY, USA, June 2014. ACM.

[6] J. Lerch, B. Hermann, E. Bodden, and M. Mezini. FlowTwist: effi-
cient context-sensitive inside-out taint analysis for large codebases. In
FSE 2014: Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages 98–108, New
York, NY, USA, Nov. 2014. ACM.

[7] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Proceedings of the 22Nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’95, pages 49–61, New York, NY, USA, 1995. ACM.

[8] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. In Selected Papers
from the 6th International Joint Conference on Theory and Practice
of Software Development, TAPSOFT ’95, pages 131–170, Amsterdam,
The Netherlands, 1996. Elsevier Science Publishers B. V.

[9] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san. Soot: A java bytecode optimization framework. In CASCON First
Decade High Impact Papers, pages 214–224. IBM Corp., 2010.

5 2015/7/21

http://wala.sf.net/

	Introduction
	State-of-the-Art
	Design
	Discussion
	Related Work
	Conclusion

